Regulation of Genetic Modified Animals in China

Zhijie Chang, Ph. D School of Medicine, Tsinghua University Current Status of Genetic Modified Animals in China

The Key Special Project:

"Breeding and Cultivation of Novel GM varieties"

budget of 17.6 billion RMB

launched in The 11th Five-year Plan (since 2008),

the largest civil research project (space technology)

The Key Special Project:

"Breeding and Cultivation of Novel GM varieties"

Cattle

Swine

Goat/Sheep

The status of GM livestock studies in China

In 1999, the first GM cattle of China was born in Shanghai Medical Genetics Institute.

GM sheep successfully bred by China Agricultural University, Northwest A&F University, CAS, Xinjiang Acadamy of Animal Science

Studies of the methodology

Studies of genes with potential applications

Studies with breeding purpose

Studies of safety assessment issues

The Processes of Bio-safety Evaluation and Administration on Genetic Modified Organisms in Agriculture:

Experimental Study

Inter-medium Experiment

Environmental Release

Field Trial

Safety Certificate

Genetic Modified Animals

Cross-breeding with GMA.

An Outline of the Requirements on The Processes of Bio-safety Evaluation on Genetic Modified Animals in Agriculture:

Information of Molecular Features

Bio-Information analysis on the bio-safety

Genetic Stability Analysis

Information of gene integrity and expression during generation

Animal Health Analysis

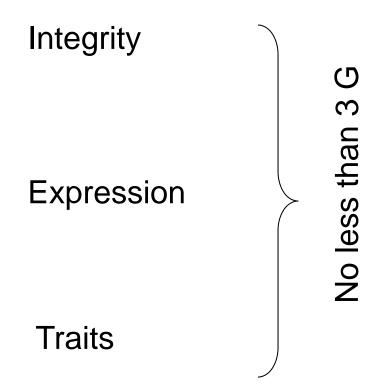
Behavior, growth, development, anatomy, reproduction.

Environment Safety

Food Safety

1. Information of Molecular Features

Study the integrity and expression of the foreign gene or fragments based on gene, transcription, and translation.


Information of expression vectors

Information of integrity of targeted gene in the animal genome

Information of expression of targeted fragments in the animal

2. Genetic Stability Analysis

Main Consideration: the integrity and expression of the genes in the animals during generations

3. Animal Health Analysis

General Index:

Behavior, growth, development, anatomy, reproduction.

Physiological Index:

Parameters in clinical and anatomic traits:

Other parameters may be applied

Environment Safety

The abilities of the animals on survival competition and adaptation to environment

Evaluation of the animals on functional efficacy

Effect of the gene shifts on environment

Effect of the animals on bio-diversity

Food Safety Evaluation

Evaluation of Toxicity on the expressed products

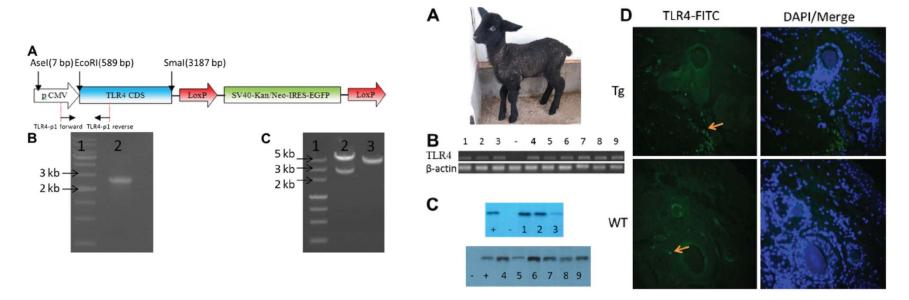
Evaluation of Allergy

Analysis of Main Nutrient Integrants

Evaluation of Safety on Whole Food

90 day feeding test by rats

Nutrition Evaluation

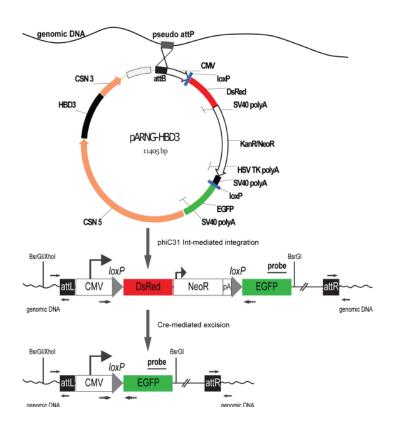

Evaluation on the effect of process on the animal products

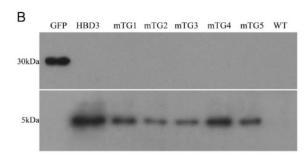
Progresses on the characterization of cloning events

Progress #1:

To get rid off the resistance/marker genes

Sheep:

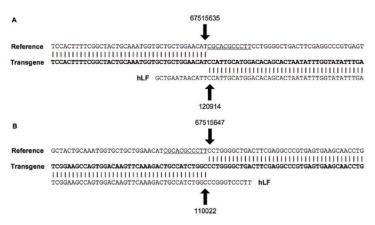

S Deng, et al., Theriogenology, 80:50-57, 2013


Progresses on the characterization of cloning events

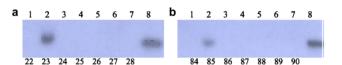
Progress #1:

To get rid off the resistance/marker genes

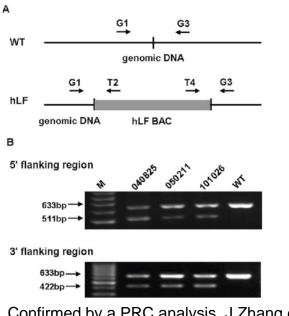
Cattle:


Y. Yu, et al., Plos One, 8:62457, 2013

Progress #2:

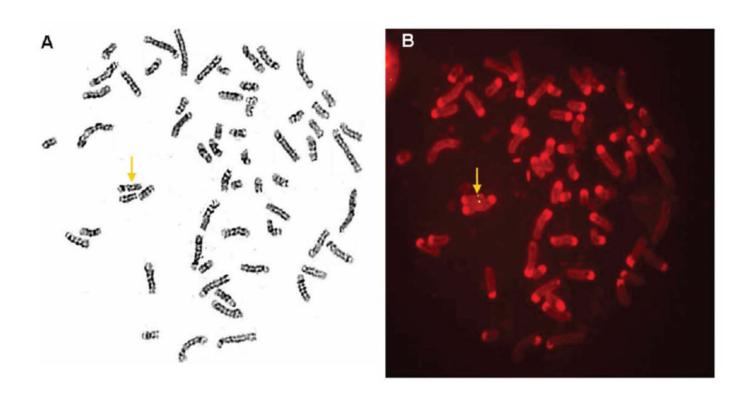

To confirm the insertion of the gene on the host genome

Southern blot confirmation


Whole genome sequence

Sequence results of the transgenic cattle. J Zhang et al. Plos One, 2012

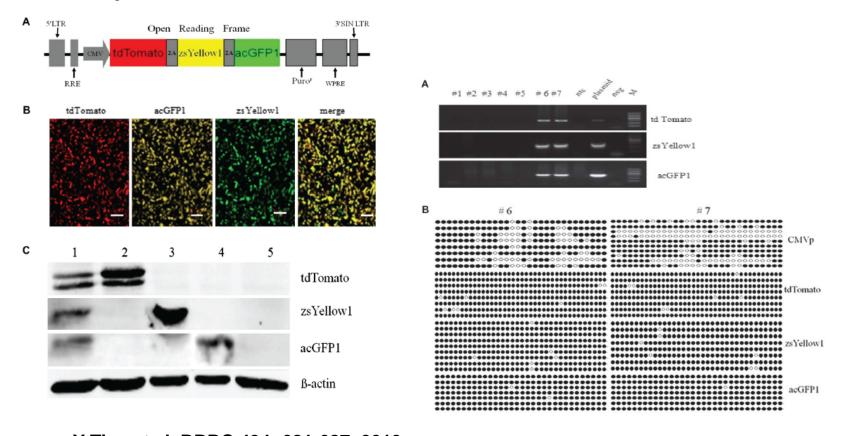
A Southern blot (transgenic goat to express human lactoferrin). J Zhang et al. PE&P, 2008



Confirmed by a PRC analysis. J Zhang et al. Plos One, 2012

Progress #2:

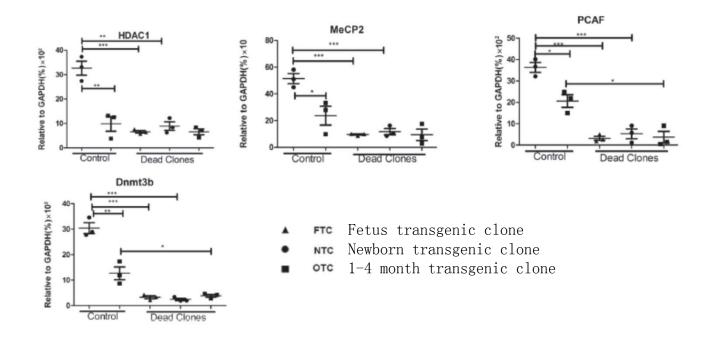
To confirm the insertion of the gene on the host genome


Verification of the transgene chromosomal location by FISH. J Zhang et al. Plos One, 2012

Progress #3:

To evaluate the modification of the promoters of inserted genes

Sheep:



Y Tian et al. BBRC 434: 681-687, 2013

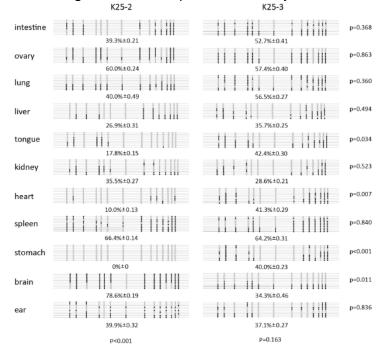
Progress #4:

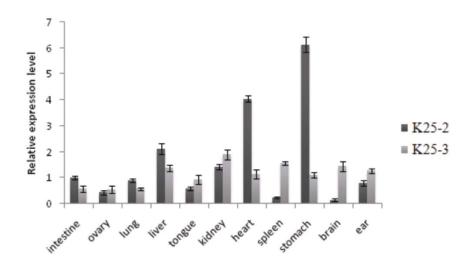
To evaluate the epigenetic effect of cloning/transgene

Goat:

L Meng et al. Theriogenology 81: 459-466, 2014

Progress #4:


To evaluate the epigenetic effect of cloning/transgene


Pig: CMV-GFP Position effect

K25-2: L1M LINE element (retrotransferase, inactive)

K25-3: EST EV932945 (Aatf, active)

Variegation of CMV promoter methylation

Z Yin et al. GMR 11: 355-369, 2012

Progress #5:

To observe the gene expression changes at the whole genome

Cattle: Fat-1 ω -6 -----> ω -3

Table 1 Gene expression that either upregulated or downregulated in the whole genome of fat-1 transgenic cattle (p-value < 0.05 and fc > 1)

Genbank Accession	Gene name	Fold change	
Metabolism			
NM_177494	carnitine palmitoyltransferase 1	1.635675	
NM_174530	cytochrome P450, family 2, subfamily E, polypeptide 1	3.129168	
NM_001100366	cytochrome P450, family 2, subfamily S, polypeptide 1	1.085825	
NM_001099367	cytochrome P450, family 3, subfamily A, polypeptide 4	1.0726473	
NM_001046391	cytochrome P450, family 4, subfamily F, polypeptide 3	1.021228	
NM_174810	ATPase, H+ transporting lysosomal 31 kDa, V1 subunit E1	1.0310035	
NM_174717	ATP synthase, H+ transporting, mitochondrial Fo complex, subunit F6	1.0874296	
NM_001083636	peroxisome proliferator activated receptor	1.1880234	
AB257751	low density lipoprotein receptor-related protein 5	-1.1805074	
NM_001077843	low density lipoprotein receptor-related protein 4	-1.5911577	
Immunity			
XM_001250583	Indoleamine 2, 3-dioxygenase	2.0460057	
XR_042605	granulocyte-macrophage colony-stimulating-factor receptor α.	2.167638	
NM 174358	interleukin-2 receptor α	-2.3078954	
NM_174093	interleukin-1, beta	-2.8775382	
NM_174086	interferon-y	-2.1359362	
NM_173923	nterleukin-6	-1.8120259	
KM 591164	interleukin-10 receptor α	-1.107485	
KM 615064	CD4 molecule	-1.19058	
XM_001787801	WC1	-6.185475	
KM_593126		-0.1854/5	
0M_593126	lymphocyte-activation gene 3 similar to Zeta-chain associated protein kinase 70 kDa	-2.201507 -2.379626	
NM_177493	acetylserotonin O-methyltransferase	-2.1411839	
M_174589	prostaglandin E receptor 4	-1.1957332	
M_001166554	prostaglandin E synthase 2	-1.0895984	
NM_001078151	mature T-cell proliferation 1	-1.0484107	
9C142016	T-cell receptor delta chain	-2.33 101 87	
KM_603087	T-cell acute lymphocytic leukemia 2	-1.1402003	
NM_001075374	lymphocyte-specific protein 1	-1.2811403	
NM_001102073	immunoglobulin-like domain containing receptor 2	-1.6142586	
NM_001076844	lymphocyte cytosolic protein 2	-1.2404228	
NM_001034720	lymphocyte cytosolic protein 1	-1.0534877	
Inflammation and cancer			
NM_001101158	cell adhesion molecule 1	10.783385	
NM_001035468	acireductone dioxygenase 1	2.893599	
NM_001083481	suppression of tumorigenicity 7 like	1.1566072	
NM_001035287	serpin peptidase inhibitor	7.2662635	
NM_001083645	RAS-like, family 10, member A	2.4159741	
NM_001101092	serine/threonine kinase 38 like	1.0883793	
KM_608304	NLR family, pyrin domain containing 13	2.8275476	
NM_174532	DnaJ (Hsp40) homolog, subfamily B, member 6	1.0343608	
NM_175804	nuclear receptor subfamily 2, group F, member 1	1.1831405	
XM_613126	chondroitin sulfate proteoglycan 4	-2.4661286	
NM_001024521	TNF receptor-associated factor 7	-1.182513	
XM_594145	L1 cell adhesion molecule	-2.0497224	
XM_604945	adenomatosis polyposis coli 2	-2.1012108	
XM_608123	laminin, alpha 4	-2.7227702	
AB043995	matrix metallopeptidase 3	-2.013966	
XM_597651	matrix metallopeptidase 15	-1.0679191	

Cell adhesion molecule 1 +10.8 fold

Table 1 Gene expression that either upregulated or downregulated in the whole genome of fat-1 transgenic cattle (p-value ?<? 0.05 and fc ?≥? 1) (Continued)

NM_174112	matrix metallopeptidase 1	-1.0266808
XM_604345	matrix metallopeptidase 16	-1.1511999
XM_609577	matrix metallopeptidase 20	-1.0834453
NM_001075502	nitric oxide synthase interacting protein	-1.027486
NM_001076799	nitric oxide synthase 2	-1.1507416
NM_174589	prostaglandin E receptor 4	-1.1957332
NM_174443	prostaglandin E synthase	-1.0576057
NM_001166554	prostaglandin E synthase 2	-1.0895984
DV775423	claudin 10	-1.221211
XM_601963	β-catenin	-2.1087096
XM_609364	NF-kB	-1.7619956
NM_001102498	NF-kB activating protein-like	-1.2362162
XM_582283	Huntingtin interacting protein-1	2.2835305
NM_001159566	transforming growth factor, beta receptor II	-1.1494738
NM_001035313	transforming growth factor beta 1 induced transcript 1	-1.560125
KM_001253071	transforming growth factor, beta receptor III	-1.0382366
NM_001101910	tumor protein p53 binding protein 1	-1.1203252
NM_174201	tumor protein p53	-1.1353312
NM_001076401	gamma-glutamyltransferase 7	-2.7013438
Nervous development		
XM_588574	protocadherin gamma subfamily A, 6	4.1054792
KM_001254336	protocadherin gamma subfamily A, 8	3.6014705
NM_001102513	protocadherin gamma subfamily B, 4	1.5915743
KM_870459	protocadherin gamma subfamily A, 9	3.789133
BC103033	potassium channel, subfamily K, member 10	1.2212783
KM_001253926	Olfactory receptor 13H1	4.0936475
NM_001076371	SEPTIN5	2.3829544
XM_608747	nucleoredavin-like 2	6.2915673
(M_001788280	semaphorin 58	-3.1176894
Fertility		
NM_001034205	Calmegin	2.228811
KM_608786	SRY (sex determining region Y)-box 8	1.8772229
NM_001076057	EF-hand calcium binding domain 6	-2.55162

T Guo et al. Lipids in Health and Diease 10:244, 2011

Progress #6: To characterize the bioactivity of the transgene

Pig: Fat-1
$$\omega$$
-6 -----> ω -3

Table 1 Fatty acids composition of total lipids from the longissimus dorsi muscle of sFat-1 transgenic pigs and control pigs (%)

Fatty acids	Male		Female	
	Transgenic pigs	Control pigs	Transgenic pigs	Control pigs
18:2 n-6	11.56 ± 1.51	19.52 ± 0.92*	10.47 ± 2.11	18.17 ± 0.62*
18:3 n-6	0.06 ± 0.02	0.05 ± 0.02	0.06 ± 0.02	0.04 ± 0.01
20:4 n-6	0.65 ± 0.04	$1.75 \pm 0.03*$	0.62 ± 0.05	$1.70 \pm 0.03*$
22:4 n-6	0.15 ± 0.02	$0.46 \pm 0.05*$	0.16 ± 0.02	$0.37 \pm 0.02*$
18:3 n-3	2.50 ± 0.02	$0.91 \pm 0.02*$	2.50 ± 0.03	$0.98 \pm 0.04*$
20:5 n-3	0.95 ± 0.08	$0.06 \pm 0.02*$	1.02 ± 0.12	$0.07 \pm 0.02*$
22:5 n-3	0.68 ± 0.03	$0.33 \pm 0.03*$	0.72 ± 0.05	$0.35 \pm 0.03*$
22:6 n-3	0.39 ± 0.03	$0.09 \pm 0.02*$	0.43 ± 0.05	$0.13 \pm 0.02*$
Total n-6 PUFAs	12.41 ± 1.55	$23.04 \pm 3.03*$	11.31 ± 2.19	$20.27 \pm 0.68*$
Total n-3 PUFAs	4.52 ± 0.10	$1.40 \pm 0.09*$	4.67 ± 0.22	$1.53 \pm 0.09*$
n-6/n-3 PUFAs	2.75 ± 0.40	$16.60 \pm 3.06*$	2.44 ± 0.60	$13.32 \pm 1.18*$

Progress #6:

To characterize the bioactivity of the transgene

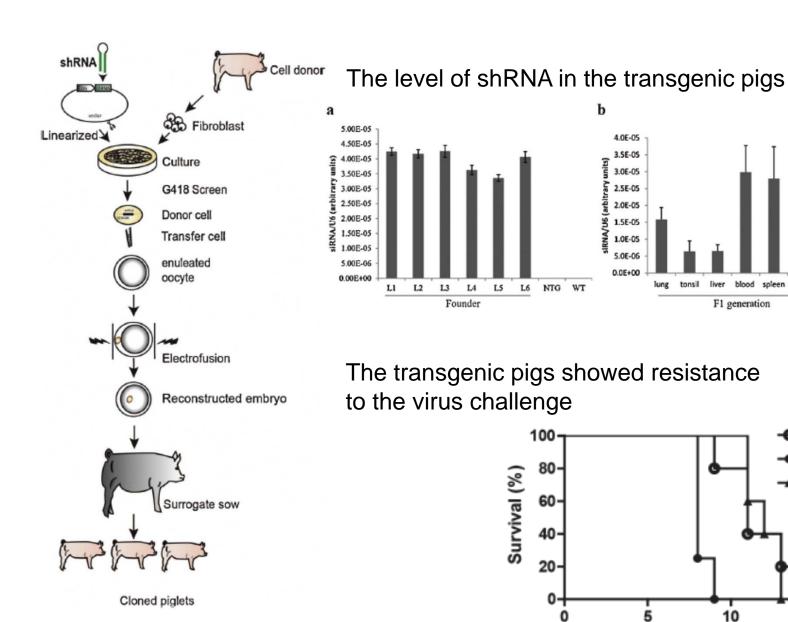

Cow: human lysozyme knock-in/Zinc-finger nucleases/b-casein

Table 4. Infection rate of three types of bacterium infused into mammary glands of five transgenic and five non-transgenic lactating cows. During each challenge experiment, each gland was infused with one of the three types of bacterium and the fourth gland was infused with PBS. TG, transgenic cows; WT, non-transgenic cows.

group mammary gland		ed mammary glands infected ^a	number of bacteria ($\times 10^3$ CFU ml ⁻¹)			
	mammary glands treated		0 h	12 h	24 h	48 h
TG	5 (Sta. aureus)	0	0	0	0	0
TG	5 (Str. agalactiae)	0	0	0	0	0
TG	5 (E. coli)	0	0	0	0	0
TG	5 (PBS)	0	0	0	0	0
WT	5 (Sta. aureus)	5	0		3.2 ± 0.7	4.8 ± 0.5
WT	5 (Str. agalactiae)	4	0		5.9 ± 0.8	5.7 ± 0.7
WT	5 (E. coli)	5	0	1.6 ± 0.2	4.5 ± 0.6	4.1 ± 0.8
WT	5 (PBS)	0	0	0	0	0

alnfection was defined as bacterium growth in two consecutive milk samples collected 12-24 h apart.

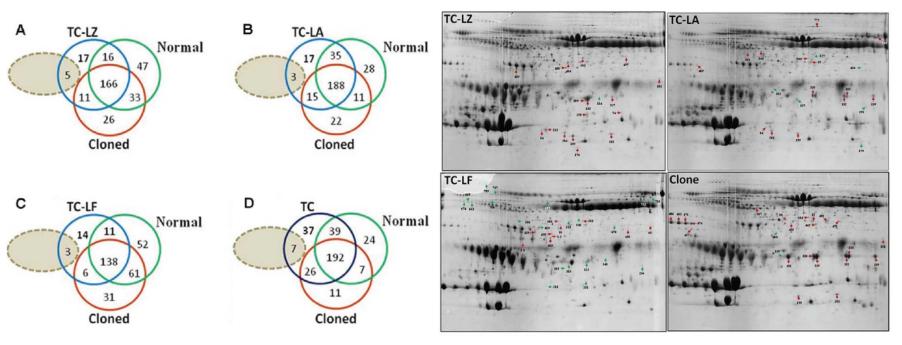
X Lu et al. Proc. R. Soc B 281: 2013368, 2014

TG NTG

Day post-infection

L Li et al. J of Biotechnology 171: 14-24, 2014

Progress #7:


To evaluate the productivity

Cow: TC-LA: h-alpha-lactalbumn; TC-LF: h-lactoferrin; TC-LZ: h-lysozyme

TC: trangenic cloned, C: cloned, N: normal

Whey Protein Profiles

Whey Protein Profiles/MALDI-TOF/TOF

2D-Nano-LC-MS/MS

R Zhang et al. Plos One 7: 49697, 2012

Progress #8:

To assess the safety of meat from transgenic cattle rhLF (lactoferrin)

Meat powder from	Meat powder from
conventional cow	transgenic cow

Macronutrients:	similar	similar
Minerals:	similar	similar
Amino acid:	similar	similar
Energy (kJ/100g):	1660	1660
Vitamins:	VA (4.79 ug/100g)	1.75

Rat 90-day feeding:	5%	10%	5%	10%
---------------------	-----------	-----	----	-----

Weight gain (male, g):
$$435.2\pm23.1$$
 435.3 ± 42.6 440.9 ± 26.4 450.7 ± 19.1

(female, g): 231.6 ± 18.8 235.1 ± 15.2 235.4 ± 24.8 236.2 ± 24.4

Hematological parameters: almost similar

Blood biochemical components Histopathological observations

Open questions

1. Transgenic animals for bioreactor

2. Transgenic animals for disease models

High risk of gene drift

Thanks

zhijiec@Tsinghua.edu.cn